Special thanks to 

Lachy Groom

 

for reviewing this post.

Appendix

  1. 1.6 Gbps means 1.6 billion 0s and 1s are being sent per second between an access point and your device.
  2. The frequency of a radio wave is simply the number of times it oscillates per second. By operating in the 2.4 GHz and 5 GHz frequency bands, its signal must oscillate 2,400,000,000 and 5,000,000,000 times per second, respectively. Use of frequencies is regulated by the FCC to prevent frequencies from interfering with one another.
  3. While the FCC generally requires licenses to use airwaves, it leaves some frequency bands open. WiFi operates in unlicensed bands (2.4GHz and 5GHz), meaning WiFi devices don’t need permission to use the bands. Some WiFi devices will try using other bands to get more bandwidth but must boot themselves off when the primary user (e.g., radar) needs to use the band.
  4. When a client device transmits data to the access point, it’ll be transmitting over the channels that the access point sits on (this assumes the device supports the same channel width as the access point; if an access point sat on channel 36 and supported a width of 40MHz, but the client only supported 20MHz, the client would only transmit over channel 36, not channels 36 and 40).
  5. The preamble must be sent very slowly so that every client, no matter how old or far away, understands that the transmission is taking place, even if they can’t demodulate the actual data being sent (demodulation takes power, so if the message is not for you it makes sense to only focus on knowing that the channel is being used). This data can then be transmitted at a much faster speed because everyone knows a transmission is taking place.

    Given all the work required to begin transmitting, individual packets for a particular destination can be aggregated into a single large transmission. The receiver will then acknowledge which pieces of the aggregate were received without error so that the transmitter can retransmit anything that wasn’t received properly. To make sure that this exchange can take place uninterrupted, clients will often first make a Request To Send (RTS) and the access point will respond with a Clear To Send (CTS) that includes a duration during which other devices should not transmit, even if the channel seems clear. When access points transmit, they often first transmit a CTS-to-self that has the same effect. If other devices are behaving properly, this Virtual Carrier Sense enables advanced features to work in environments with older devices without the older devices needing to understand or even hear the transmission.
  6. Note that this uses airtime, not bandwidth. Airtime is how long a transmitter uses spectrum (i.e., radio waves in the frequency range that WiFi is allowed to operate in). Bandwidth is the amount of spectrum the signal is using.
  7. MU-MIMO (stream sharing) in 802.11ac or HEW (sub-channel sharing) in 802.11ax.